Reaction Mechanism of NO Reduction by CH₄ over Rare Earth Oxides in Oxidizing Atmosphere

Kiyoshi Otsuka,* Qinghong Zhang, Ichiro Yamanaka, Hiromi Tono,† Masaharu Hatano,*,† and Hiroo Kinoshita†

Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152

†Next Generation Catalyst Research Institute, Co., Ltd.,

Kanagawa Science Park, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213

(Received April 15, 1996)

Rare earth oxides have been examined as catalysts for the catalytic reduction of NO by CH_4 in the presence of oxygen. Among the rare earth oxides examined, Sc_2O_3 and Sm_2O_3 were found to be active for this reaction. For the Sm_2O_3 catalyst, ZrO_2 was the most effective support. The mechanism of the reaction was studied over the Sm_2O_3/ZrO_2 . Kinetic studies indicated that CH_4 oxidation is initiated by O_2 , and NO can react only with CH_3 radicals formed from the reaction of CH_4 with O_2 . Ab-initio MO calculations also suggested that CH_3 radical is a more favorable reducing species for selective reduction of NO than CH_4 . It is thus proposed that NO is reduced into N_2 by the CH_3 radical formed from the activation of methane by oxygen.

The gasoline lean burn engine and Diesel engine are promising technologies for suppressing carbon dioxide emissions, a major factor behind global warming, and for improving fuel economy. Those engines, however, are having the difficulties of controlling the NO_x emissions, because the existing three-way catalysts cannot work under such oxidizing conditions. In this connection, many researchers and institutes have been studying selective reduction of NO_x by hydrocarbons in an oxygen-rich atmosphere. A wide variety of catalysts have been recognized to show the highest catalytic activity among them. However, the oxide catalysts have several advantages with regard to the durability in use and the simplicity for preparation in spite of having a lower activity than that of zeolite.

Rare earth oxides, which have been recognized to show high heat resistance, have been reported as active catalysts for selective reduction of NO by methane by Vannice et al., $^{1,2)}$ and a basic reaction mechanism has been suggested. The detailed reaction mechanism, however, has not been confirmed. In this paper the performances of rare earth oxides are examined for NO reduction using CH_4 as a reductant and the effective supports are investigated to improve the activities of rare earth oxides. Then kinetic studies are carried out and the detailed reaction mechanism of NO reduction by CH_4 in the presence of O_2 will be discussed. Some theoretical considerations based on ab-initio molecular orbital theory are also presented.

Experimental

The reactions were carried out using a conventional fixed-bed flow system with a quartz tubular reactor (i.d.=8 mm) under atmo-

spheric pressure. The standard reaction conditions were as follows: weight of catalyst, 0.5 g; temperature, 873—973 K; NO concentration, 9200 ppm; CH₄, 8500 ppm; O₂, 5%; flow rate, 58 cm³ min⁻¹. The effluent gases were analyzed by gas-chromatography.

 Sm_2O_3 (5 wt%)/ ZrO_2 was prepared by the impregnation method using ZrO_2 powder and aqueous solution of $Sm(NO_3)_3$. The appropriate amount of $Sm(NO_3)_3$ -impregnated ZrO_2 was dried and calcined at 573 K for 30 min and at 973 K for an additional 2 h. The other supported Sm_2O_3 catalysts were prepared by an impregnation method similar to that of Sm_2O_3/ZrO_2 . The yields of N-compound (N_2, N_2O) and CO_x (CO, CO_2) were calculated on the basis of nitrogen and carbon number respectively.

Ab-initio molecular orbital calculations were performed using the Gaussian92 program package. Unrestricted MP2 method was used for geometry optimization with 6-31G** basis set and its energy calculation including zero-point vibration energy was obtained by using spin projection MP2 method. Each optimized structure was verified by a frequency calculation, and then IRC calculation was performed to verify that the obtained transition state connect to the minimum state.

Results and Discussion

Catalytic Performance over a Series of Rare Earth Oxides. Figure 1 shows the N_2 yield of NO decomposition, NO reduction by CH_4 (NO+ CH_4) and NO reduction by CH_4 in the presence of O_2 (NO+ CH_4 + O_2) for a series of rare earth oxides without supports at 873 and 973 K.

NO decomposition activities were measured between 573 and 973 K. NO decomposition did not proceed for any oxide tested at these conditions except for Pr and Sc oxides. Pr_6O_{11} catalyzed NO decomposition above 700 K, and the N_2 yield at 973 K was 7%.

Most of the catalysts shown in Fig. 1 were active for NO

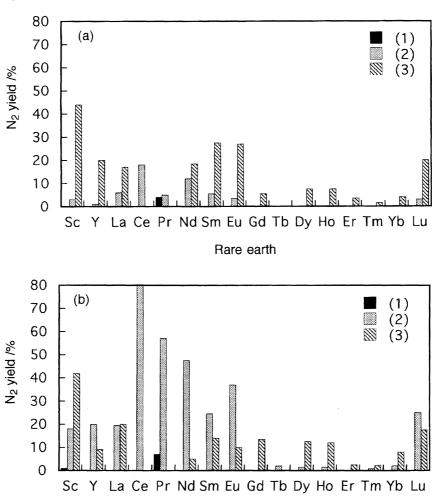


Fig. 1. N₂ yield over rare earth oxides for (1) NO decomposition, (2) NO+CH₄ reaction, and (3) NO+CH₄+O₂ reaction at (a) 873 and (b) 973 K under standard reaction conditions: NO, 9200 ppm; CH₄, 8500 ppm; O₂, 5%; weight of catalyst, 0.5 g; flow rate, 58 cm³ min⁻¹.

Rare earth

reduction by CH_4 in the absence of O_2 in contrast to the direct NO decomposition. The oxides of Ce, Pr, Nd, and Eu showed higher activity than others. Among the catalysts tested, CeO_2 was the most active catalyst for NO reduction by CH_4 , and the N_2 yield at 973 K reached 80%.

 O_2 addition increased the N_2 yield for all the catalysts at 873 K except for Ce, Pr, and Tb oxides as shown in Fig. 1. The order of N_2 yield at 873 K was as follows; $Sc_2O_3 > Sm_2O_3 = Eu_2O_3 > Lu_2O_3 = Y_2O_3 > Nd_2O_3 = La_2O_3 > Dy_2O_3 = Ho_2O_3 > Gd_2O_3 > Yb_2O_3 > Er_2O_3 > Tm_2O_3$. The correlation between activity and catalyst was quite different from that of NO reduction by CH₄ in the absence of O_2 . As shown above, Sc, Sm, and Eu oxides showed high catalytic activities for the selective reduction of NO with CH₄ and O_2 . Therefore, we have chosen Sm_2O_3 as a representative catalyst of these rare earth oxides for further studies.

Catalytic Activity of Sm_2O_3 . The catalytic activity of Sm_2O_3 was measured as a function of reaction temperature between 500 and 973 K as illustrated in Fig. 2. NO reduction by CH_4 in the absence and presence of O_2 was observed

above 700 K, while the direct decomposition of NO did not proceed at any temperatures. N₂O was detected below 873 K, but the amount of N₂O was negligible compared with the amount of N₂ formed. In the case of NO reduction in the absence of O2, N2 yield increased with increasing reaction temperature up to 973 K. In the presence of O2, on the contrary, the maximum N2 yield was observed at 873 K, and it decreased at higher temperature. This temperature dependence, which was typically observed in other catalytic systems, can be accounted for by the preferential reaction between O2 and CH4 at higher temperature. CO2 yield increased with increasing temperature for both reactions as shown in Fig. 2. CO₂ yield for NO reduction in the presence of O₂ was much higher than in the absence of O₂. Detailed reaction mechanism will be discussed later on the bases of kinetic studies and computational chemistry.

Catalytic Activity of Supported Sm_2O_3 . We looked for effective supports for the Sm oxide in order to improve the catalytic activity. Figure 3 shows the N_2 and CO_2 yield of selective reduction of NO over Sm oxide catalysts supported on various supports at 873 K. The content of Sm_2O_3 (0.025)

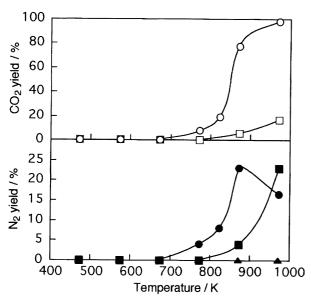
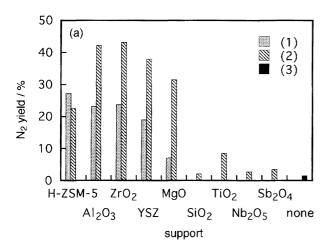



Fig. 2. Temperature dependencies of N_2 yield and CO_2 yield over Sm_2O_3 for NO decomposition $(N_2: \blacktriangle)$, $NO+CH_4$ reaction $(N_2: \blacksquare, CO_2: \square)$, and $NO+CH_4+O_2$ reaction $(N_2: \blacksquare, CO_2; \bigcirc)$ under standard reaction conditions.

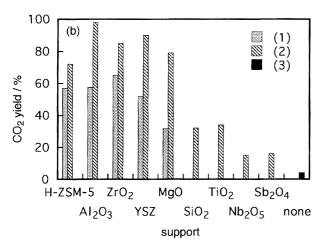


Fig. 3. (a) N_2 yield and (b) CO_2 yield over (1) support only, (2) Sm_2O_3 (5 wt%)/support, and (3) Sm_2O_3 (0.025 g) at 873 K under standard reaction conditions.

g) was adjusted to 5 wt% for the supported catalysts. SiO₂, TiO₂, Nb₂O₅, and Sb₂O₄ were not effective supports from the standpoint of N₂ yield. H-ZSM-5 itself is a good catalyst for selective NO reduction as reported by Hamada et al.³⁾ and Kikuchi and Yogo,4) and it also showed good performance at the conditions in this study. However, N2 yield was decreased by Sm₂O₃ loading, while CO₂ yield was increased. On the other hand, Al₂O₃, ZrO₂, YSZ (yittria stabilized zirconia), and MgO were found to be the effective supports. Among the supports tested, Al₂O₃ and ZrO₂ showed the highest enhancing effect on the basis of the N₂ yield, which exceeded 40%. However, the CO₂ yield was more than 97% for Sm₂O₃/Al₂O₃, and it was 84% for Sm₂O₃/ZrO₂. This result indicates that the selectivity of CH₄-NO reaction is higher for Sm₂O₃/ZrO₂ than Sm₂O₃/Al₂O₃. Based on the results above, it was found that ZrO2 was the most effective support for Sm₂O₃. Therefore, more detailed studies will be carried out on Sm₂O₃/ZrO₂.

The dependence of the loading of Sm_2O_3 for Sm_2O_3/ZrO_2 at short contact time and low concentration of NO and CH_4 (catalyst weight, 0.5 g; flow rate, 580 ml min⁻¹; NO, 5000 ppm; CH_4 , 5000 ppm) on the catalytic activity is shown in Fig. 4. The effect on N_2O yield and CO yield was not so appreciable, but maximum N_2 and CO_2 yield were observed at 10% loading. Furthermore, the profiles of loading effects on N_2 and CO_2 yields were very similar. These results suggested that N_2 formation is closely related to CH_4 oxidation.

Kinetic Studies on Selective Reduction of NO by CH₄ over Sm_2O_3/ZrO_2 . The effect of reaction temperature on catalytic activity of Sm_2O_3 (5 wt%)/ ZrO_2 was examined. N_2 , N_2O , CO_2 , and CO yields as a function of reaction temperature are shown in Fig. 5. Main products were N_2 and CO_2 , and small amounts of N_2O and CO were produced, of which maxima were 3 and 8% respectively. The reaction proceeded above 773 K, and the conversions of NO and

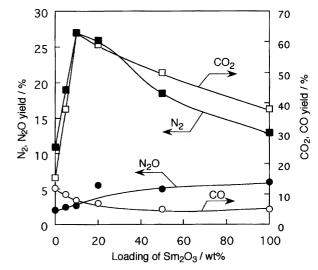


Fig. 4. Effect of Sm₂O₃ loading on (■) N₂ yield, (●) N₂O yield, (□) CO₂ yield, and (○) CO yield: NO, 5000 ppm; CH₄ 5000 ppm; O₂, 5%; catalyst, weight, 0.5 g; flow rate, 580 cm³ min⁻¹; temperature, 866 K.

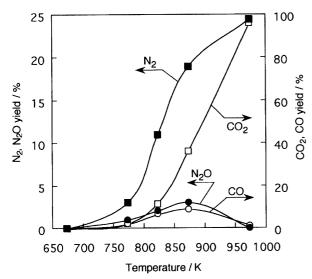


Fig. 5. Temperature dependencies of (■) N₂ yield, (●) N₂O yield, (□) CO₂ yield, and (○) CO yield over Sm₂O₃/ZrO₂: NO, 5000 ppm; CH₄, 5000 ppm; O₂, 5%; catalyst weight, 0.5 g; flow rate, 580 cm³ min⁻¹.

CH₄ increased with increasing temperature. CH₄ conversion constantly increased with temperature, and it exceeded 90% above 950 K. The increase in NO conversion at temperatures above 850 K, on the contrary, was not as marked as that of CH₄ conversion. Thus, the selectivity of CH₄ used for NO reduction decrease at high reaction temperatures.

Figure 6 shows the effect of CH₄ concentration on the formation rate of N₂, N₂O, CO₂, and CO at 866 K. The conversion rates of both NO and CH₄ increased monotonously with increasing the concentration of CH₄.

Figure 7 shows the effect of NO concentration on the formation rate of products at 866 K. The formation rate of N_2 and N_2O increased with increasing concentration of NO, but the formation rates of CO_2 and CO were not affected by

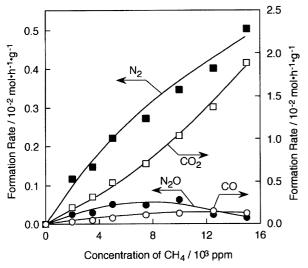


Fig. 6. CH₄ concentration effect on (\blacksquare) N₂, (\blacksquare) N₂O, (\square) CO₂, and (\bigcirc) CO formation rate over Sm₂O₃/ZrO₂: Temperature, 866 K; NO, 5000 ppm; O₂, 5%; catalyst weight, 0.5 g; flow rate, 580 cm³ min⁻¹.



Fig. 7. NO concentration effect on (■) N₂, (●) N₂O, (□) CO₂, and (○) CO formation rate over Sm₂O₃/ZrO₂: Temperature, 866 K; CH₄, 5000 ppm; O₂, 5%; catalyst weight, 0.5 g; flow rate, 580 cm³ min⁻¹.

the NO concentration. Because the rate-determining step of methane oxidation over rare earth oxides is believed to be hydrogen atom abstraction from CH₄, independence of NO concentration on CH₄ conversion indicates that NO does not directly react with CH₄. Therefore, it is suggested that NO can react only with a reaction intermediate generated from CH₄, but cannot activate CH₄ itself.

Figure 8 shows the effect of O_2 concentration on the formation rate of products at 866 K. N_2 formation was accelerated by O_2 at low O_2 concentration (< 2%), but decreased above 2% concentration of O_2 . This volcano-shape dependence of O_2 concentration has been observed in many other catalytic systems. The acceleration effect of O_2 at low concentration has been ascribed to the formation of active intermediates

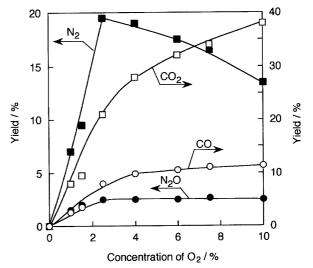


Fig. 8. O_2 concentration effect on (\blacksquare) N_2 yield, (\bigcirc) N_2O yield, (\square) CO_2 yield, and (\bigcirc) CO yield over Sm_2O_3/ZrO_2 : Temperature, 866 K; CH_4 , 5000 ppm; NO, 5000 ppm; catalyst weight, 0.5 g; flow rate, 580 cm³ min⁻¹.

generated by the reaction of hydrocarbons with oxygen as described with regard to the results of Fig. 7. However, the deceleration effect at high O_2 concentration in Fig. 8 can be explained in terms of the decrease in the steady-state concentration of the active intermediate due to their further conversion into CO_2 at high O_2 concentration.

Kinetic Studies on CH₄ Oxidation by O₂ without NO over Sm_2O_3/ZrO_2 . CH₄ oxidation by O₂ in the absence of NO was carried out in order to get information about the role of NO in the reaction mechanism. The major products were CO_2 and CO_3 and no oxidative coupling products such as C_2H_6 and C_2H_4 , which are the major products at CH₄ rich condition, was detected under any conditions of this work. Figure 9 shows the effect of temperature on CH₄ conversion. The reaction proceeded above 773 K, and conversion of CH₄ reached 91% at 973 K. If we compare the results of Fig. 9 with those of CO_2 and CO_3 formations in Fig. 5, it is obvious

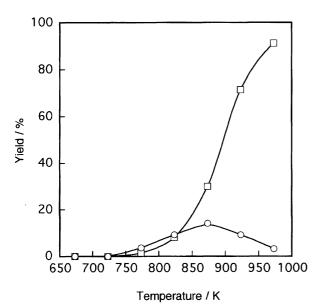


Fig. 9. (\square) CO₂ yield and (\bigcirc) CO yield for CH₄+O₂ (without NO) reaction at different temperatures: CH₄, 5000 ppm; O₂, 5%; catalyst weight, 0.5 g; flow rate, 580 cm³ min⁻¹.

that the presence of NO does not affect the conversion rates of CO₂ and CO formations appreciably at any temperatures.

Figure 10 shows the effect of O_2 concentration on the yields of products at 866 K. The results in this figure show that the yield of CO_2 was lower for the CH_4 oxidation without NO than that with NO in Fig. 8, while total conversions of CH_4 (viz. CO_2+CO) were almost the same for both reactions.

Reaction Mechanism of Selective Reduction of NO by CH_4 over Sm_2O_3/ZrO_2 . As described earlier, the reaction intermediate generated from the reaction between CH_4 and O_2 may play an important role in the selective NO reduction by CH_4 in the presence of O_2 . Rare earth oxides are also well-known to be active catalysts for the oxidative coupling of methane, $^{5,6)}$ and a methyl radical generated by the reaction between CH_4 and O_2 may be a reaction intermediate resulting in the formation of a coupled product, i.e., C_2H_6 . Figure 11

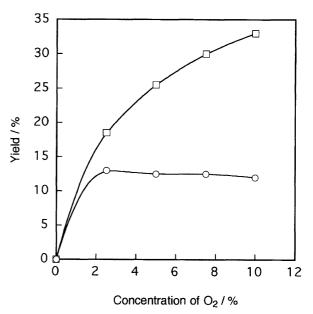


Fig. 10. O_2 concentration effect on (\square) CO_2 yield and (\bigcirc) CO yield for CH_4+O_2 (without NO) reaction: Temperature, 866 K; CH_4 , 5000 ppm; catalyst weight, 0.5 g; flow rate, $580 \text{ cm}^3 \text{ min}^{-1}$.

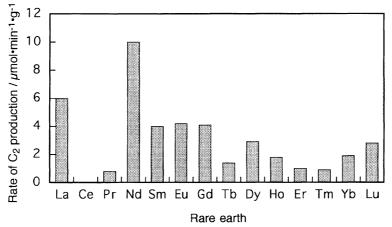


Fig. 11. Rate of C₂ production for CH₄ oxidative coupling reaction over rare earth oxides reported by Otsuka et al.⁵⁾ The specific rates were normalized per gram of catalysts.

shows the C₂ compound production rate measured for various rare earth oxides reported by Otsuka et al.⁵⁾Figure 12 shows methyl radical formation rate measured by using MIESR technique in CH₄ oxidation by O₂ for the series of rare earth oxides reported by Lunsford et al.⁶⁾ The correlation of methyl radical formation rates was in good agreement with that of C₂ coupling activities (Fig. 11) and NO selective reduction activities (see the results of (3) in Fig. 1). For comparison of the results of Fig. 1, Fig. 11, and Fig. 12, it is suggested that the activity of NO selective reduction is closely related to the methyl radical formation as well as to oxidative coupling of methane.

The reactivities of CH₃ radical and CH₄ were investigated by computational chemical studies on the basis of ab-initio molecular orbital theory. In order to get information about the reactivity, activation energies were estimated by calculating potential energy surface of the reactions. Figure 13 illustrates the structures obtained from energy optimized calculation. Their corresponding optimized parameters are summarized in Table 1. Table 2 summarizes the Mulliken charge population on NO and O₂ at transition state and product state. Negative value of charge population stands for electron transfer from reductant (CH₃, CH₄) to oxidant (NO, O₂). The optimized structures indicate that N-O and O-O bond are weakened by the interaction with both of CH₃ radical and CH₄. It is also indicated from the data of charge population that electrons transfer to NO and O2 from reductant in all reactions. These results indicate that the reactions of NO and O₂ with CH₃ radical and CH₄ can be interpreted as an electron donation to π^* orbital of NO and O₂ from reductnat (CH₃·, CH₄).

The total energy of reactant state and transition states are listed in Table 3. Activation energy is estimated from the energy difference between the total energy of reactant state and transition state. In the case of reaction with CH_3 radical, the energy barrier for NO is much lower than O_2 , while they are nearly equal for the reaction with CH_4 . This result suggests that the activated intermediate such as CH_3 radical is a better reducing species for selective reduction of NO

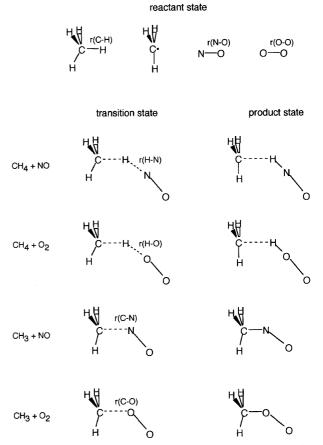


Fig. 13. Illustration of optimized geometries for reactions of CH₄+NO, CH₄+O₂, CH₃·+NO, and CH₃·+O₂.

than a saturated hydrocarbon such as CH₄.

Many groups have suggested that NO₂ formed from reaction of NO with O₂ initiated the selective NO reduction in various catalytic systems.^{4,7—11)} Kikuchi and Yogo⁴⁾ proposed that the reaction proceeded via the reaction between NO₂ and CH₄ on the grounds that the presence of NO enhances the CH₄ conversion. Such enhancement of CH₄ conversion by NO, however, was not observed for the reaction over rare earth oxide in our experiment. This result suggests that se-

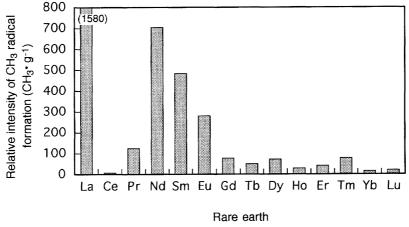


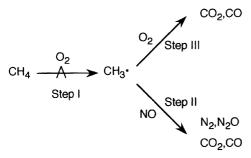
Fig. 12. Relative intensities for methyl radical formation over rare earth oxides reported by Lunsford et al.⁶⁾ The specific rates were normalized per gram of catalysts.

Reactant	Bond length	Reactant state	Transition state	Product state
CH ₄ +NO	r(C-H)	1.09	1.64	2.29
	r(N-O)	1.14	1.15	1.24
	r(H-N)		1.14	1.05
CH_4+O_2	r(C-H)	1.09	1.45	2.21
	r(O-O)	1.25	1.29	1.32
	r(H–O)		1.10	0.98
CH ₃ +NO	r(N-O)	1.14	1.23	1.24
	r(C-N)		1.49	1.48
CH_3+O_2	r(O-O)	1.25	1.21	1.31
	r(C-O)		2.01	1.45

Table 1. Optimized Bond Length at Reactant, Transition, and Product States (in Ångstrom)

Table 2. Mulliken Charge Population on NO and O2

Reactant	Transition state	Product state	
CH ₄ +NO	-0.256	-0.291	
CH_3+O_2	-0.403	-0.404	
CH ₃ +NO	-0.266	-0.256	
CH_3+O_2	-0.114	-0.396	


Table 3. Total Energies and Activation energies for the Reaction of NO and O₂ with CH₄ and CH₃

Reaction	Reactant state	Transition state	Activation energy
Reaction	a.u.	a.u.	kcal mol ⁻¹
CH ₄ +NO	-169.8723697	-169.770807	63.7
CH_4+O_2	-190.2706370	-190.159610	69.7
CH ₃ +NO	-169.2181942	-169.2754007	-35.9
CH_3+O_2	-189.6164615	-189.6055867	6.8

lective reduction of NO over rare earth oxides proceed by a different mechanism from that of Ga/ZSM-5.

We propose the following reaction mechanism (Scheme 1) from the observations described above. The reaction proceeds through a CH_3 radical as a reaction intermediate formed from the activation of CH_4 by O_2 (Step I). NO is reduced by the CH_3 radical producing N_2 , N_2O , CO_2 , and CO (Step II). The CH_3 radical also easily reacts with O_2 producing CO and CO_2 (Step III).

Assuming Step I is the rate-determining step, CH₄ conversion is dependent on O₂ concentration but independent

Scheme 1. Reaction mechanism of selective NO reduction over Sm_2O_3/ZrO_2 .

on NO concentration. Since CH₃ radical concentration is dependent on the concentration of CH₄, conversion rate of NO is influenced by CH₄ concentration. Because O₂ is indispensable for CH3 radical formation, the presence of O2 induces NO reduction. However, high concentration of O2 is unfavorable for selective reduction of NO, because O2 also consumes CH₃ radical by successive oxidation; thus the NO conversion decreases at high O₂ concentration (Fig. 8). The relative rates of CH₃ radical reactions (Step II or III) are changed by reaction temperature because of the difference of activation energies in the reaction with NO and that with O_2 . At higher temperature the reaction of CH₃ radical with O₂ is more favorable than with NO due to the higher activation energy for the reaction with O₂ than with NO as suggested by theoretical calculation described above. Therefore, the selectivity of CH₄ reacting with NO decreases at temperatures higher than 873 K (Fig. 5).

References

- 1) X. Zhang, A. B. Walters, and M. A. Vannice, *Appl. Catal. B*, **4**, 237 (1994).
- X. Zhang, A. B. Walters, and M. A. Vannice, J. Catal., 155, 290 (1995).
- 3) H. Hamada, Y. Kintaichi, M. Sasaki, and T. Ito, *Appl. Catal.*, **64**, L1 (1990).
 - 4) E. Kikuchi and K. Yogo, Catal. Today, 22, 73 (1994).
- 5) a) K. Otuka, K. Jinno, and A. Morikawa, *Chem. Lett.*, **1985**, 499; b) K. Otsuka, K. Jinno, and A. Morikawa, *J. Catal.*, **100**, 353 (1986).
- 6) K. D. Campbell, H. Zhang, and J. H. Lunsford, *J. Phys. Chem.*, **92**, 750 (1988).
- 7) M. Sasaki, H. Hamada, Y. Kintaichi, and I. Ito, *Catal. Lett.*, **15**, 297 (1992).
- 8) G. P. Ansell, A. F. Diwell, S. E. Golunski, J. W. Hayes, R. R. Rajaram, T. J. Truex, and A. P. Walker, *Appl. Catal. B*, **2**, 81 (1993).
- 9) C. Yokoyama, T. Okuhara, and M. Misono, *J. Catal.*, **150**, 9 (1994).
- 10) Y. Li, T. L. Slager, and J. N. Armor, *J. Catal.*, **150**, 388 (1994).
- 11) K. A. Bethke, C. Li, M. C. Kung, B. Yang, and H. H. Kung, *Catal. Lett.*, **1995**, 287.